PI :: π КРУГ БЕСКОНЕЧНОСТИ π
Mar. 15th, 2010 07:13 am![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
- В последующие дни я экспериментировал с
растениями, птицами и рыбами, нанизывал
спирали ДНК, составлял Периодическую
систему, изобретал законы согласования и число
"пи". Знаете, чего стоит изобрести число "пи"?
14 марта человечество отмечало Международный день числа «пи». Почему 14 марта? Если быть точнее, то поздравлять окружающих с днем «пи» нужно в марте 14-го в 1:59:26, в соответствии с цифрами числа «пи» – 3,1415926…
Этот праздник самый естественный, общечеловеческий и даже общегалактический, не связанный с религией или местными традициями отдельных стран.
(Число дней в 2010 году) /(Число выходных дней в 2010 году) = 3.14
Абсолютно все знают, что такое "пи". Но знакомое всем со школы число возникает во многих ситуациях, не имеющим никакого отношения к окружностям. Его можно встретить в теории вероятностей, в формуле Стирлинга для вычисления факториала, в решении задач с комплексными числами и прочих неожиданных и далеких от геометрии областях математики. Английский математик Август де Морган назвал как-то "пи" “…загадочным числом 3,14159…, которое лезет в дверь, в окно и через крышу”.
Это таинственное число, связанное с одной из трех классических задач Античности - построение квадрата, площадь которого равна площади заданного круга - влечет за собой шлейф драматических исторических и курьезных занимательных фактов.
Несколько занимательных фактов о числе Пи
1. А знаете ли Вы, что первым, кто использовал для числа 3,14 символ «пи», был Вильям Джонс из Уэльса, и произошло это в 1706 году.
2. А знаете ли Вы, что мировой рекорд по запоминанию числа Пи установил 17 июня 2009 года украинский нейрохирург, доктор медицинских наук, профессор Андрей Слюсарчук, удержавший в памяти 30 млн. его знаков (20 томов текста).
3. А знаете ли Вы, что в 1996 году Майк Кейт написал короткий рассказ, который называется «Ритмическая каденция» («Cadeic Cadenze»), в его тексте длина слов соответствовала первым 3834 цифрам числа Пи.
Символ Пи впервые употребил в 1706 году Уильям Джонс, однако настоящую популярность он приобрел после того, как его начал использовать в своих работах математик Леонард Эйлер в 1737 году.
Считается, что праздник придумал в 1987 году физик из Сан-Франциско Ларри Шоу, обративший внимание на то, что 14 марта (в американском написании – 3.14) ровно в 01:59 дата и время совпадут с первыми разрядами числа Пи = 3,14159.
14 марта 1879 года также родился создатель теории относительности Альберт Эйнштейн, что делает этот день еще более привлекательным для всех любителей математики.
Кроме того, математики отмечают и день приближенного значения Пи, который приходится на 22 июля (22/7 в европейском формате записи даты).
"В это время читают хвалебные речи в честь числа Пи и его роли в жизни человечества, рисуют антиутопические картины мира без Пи, едят пироги с изображением греческой буквы Пи или с первыми цифрами самого числа, решают математические головоломки и загадки, а также водят хороводы", – пишет Википедия.
В цифровом выражении Пи начинается как 3,141592 и имеет бесконечную математическую продолжительность
Свежий рекорд составляет около 2,7 триллиона (2 триллиона 699 миллиардов 999 миллионов 990 тысяч) десятичных знаков.
Французский ученый Фабрис Беллар вычислил число Пи с рекордной точностью. Об этом сообщается на его официальном сайте. Свежий рекорд составляет около 2,7 триллиона (2 триллиона 699 миллиардов 999 миллионов 990 тысяч) десятичных знаков. Предыдущее достижение принадлежит японцам, которые посчитали константу с точностью до 2,6 триллиона десятичных знаков.
На вычисления у Беллара ушло около 103 дней. Все расчеты проводились на домашнем компьютере, стоимость которого лежит в пределах 2000 евро. Для сравнения, предыдущий рекорд был установлен на суперкомпьютере T2K Tsukuba System, у которого ушло на работу около 73 часов.
Изначально число Пи появилось как отношение длины окружности к ее диаметру, поэтому его приближенное значение вычислялось как отношение периметра вписанного в окружность многоугольника к диаметру этой окружности. Позже появились более совершенные методы. В настоящее время Пи вычисляется при помощи быстро сходящихся рядов, наподобие тех , которые были предложены Сринивасом Рамануджаном в начале 20 века.
Сначала Пи рассчитывалось в двоичной системе, после чего переводилось в десятичную. Это проделали за 13 дней. В общей сложности для хранения всех цифр требуется 1,1 терабайта дискового пространства.
Подобные вычисления имеют не только прикладное значение. Так, сейчас с Пи связано множество нерешенных задач. Не решен вопрос о нормальности этого числа. Например, известно, что Пи и e (основание экспоненты) трансцендентные числа, то есть не являются корнями никакого многочлена с целыми коэффициентами. При этом, однако, является ли сумма этих двух фундаментальных констант трансцендентным числом или нет - неизвестно до сих пор.
Более того, до сих пор не известно, все ли цифры от 0 до 9 встречаются в десятичной записи числа Пи бесконечное число раз.
В данном случае сверхточное вычисление числа является удобным экспериментом, результаты которого позволяют сформулировать гипотезы относительно тех или иных особенностей числа.
В Сети много страниц, посвященных вычислению Пи
Число π вычисляется по определенным правилам, причем при любом вычислении, в любом месте и в любое время, на определенном месте в записи числа стоит одна и та же цифра. Значит существует некий закон, по которому в числе π в определенном месте ставится определенная цифра. Конечно, это закон не простой, но закон всё таки есть. И, значит, цифры в записи числа π не случайны, а закономерны.
Считают число Пи: PI = 4 — 4/3 + 4/5 — 4/7 + 4/9 — … — 4/n + 4/(n+2)
Поиск Pi или деление столбиком:
Пары целых чисел, дающих при делении большое приближение к числу Pi. Деление производилось "столбиком", чтобы обойти ограничения по длине чисел с плавающей точкой Visual Basic 6.
Pi = 3.1415926535897932384626433832795028841971...
К экзотическим методам вычисления пи вроде использования теории вероятности или простых чисел принадлежит и метод, придуманный Г.А. Гальпериным, и называемый Пи-биллиардом, который основан на оригинальной модели. При столкновении двух шаров, меньший из которых находится между большим и стенкой, и больший движется к стенке, число соударений шаров позволяет вычислить Пи со сколь угодно большой наперед заданной точностью. Надо только запустить процесс (можно и на компьютере) и посчитать число ударов шаров. Программная реализация этой модели пока не известна
В каждой книге по занимательной математике вы непременно найдете историю вычисления и уточнения значения числа "пи". Сначала, в древних Китае, Египте, Вавилоне и Греции для расчетов использовали дроби, например, 22/7 или 49/16. В Средние века и Эпоху Возрождения европейские, индийские и арабские математики уточнили значение "пи" до 40 знаков после десятичной точки, а к началу Эпохи Компьютеров усилиями многих энтузиастов количество знаков было доведено до 500. Такая точность имеет чисто научный интерес (об этом ниже), для практики, в пределах Земли достаточно 11 знаков после точки.
Тогда, зная, что радиус Земли равен 6400 км или 6,4*1012 миллиметров, получится, что мы, отбросив двенадцатую цифру "пи" после точки при вычислении длины меридиана, ошибемся на несколько миллиметров. А при расчете длины Земной орбиты при вращении вокруг Солнца (как известно, R=150*106 км = 1,5*1014 мм) для такой же точности достаточно использовать "пи" с четырнадцатью знаками после точки. Среднее расстояние от Солнца до Плутона - самой далекой планеты Солнечной системы - в 40 раз больше среднего расстояния от Земли до Солнца.
Для вычисления длины орбиты Плутона с ошибкой в несколько миллиметров достаточно шестнадцати знаков "пи". Да что уж там мелочиться - диаметр нашей Галактики около 100.000 световых лет (1 световой год примерно равен 1013 км) или 1018 км или 1030 мм., а еще в XXVII веке были получены 34 знака "пи", избыточные для таких расстояний.
В чем же сложность вычисления значения "пи"? Дело в том, что оно не только иррациональное (то есть его нельзя выразить в виде дроби P/Q, где P и Q целые числа), но оно еще не может быть корнем алгебраического уравнения. Число , например, иррациональное, не может быть представлено отношением целых чисел, но оно является корнем уравнения Х2-2=0, а для чисел "пи" и е (постоянная Эйлера), нельзя указать такое алгебраическое (не дифференциальное) уравнение. Такие числа (трансцендентные) вычисляются рассмотрением какого-либо процесса и уточняются за счет увеличения шагов рассматриваемого процесса. Самый “простой” путь - вписывать в окружность правильный многоугольник и вычислять отношение периметра многоугольника к его “радиусу”...pages marsu
Число объясняет мир
Кажется, двум американским математикам удалось приблизиться к разгадке тайны числа пи, представляющего в сугубо математическом плане соотношение длины окружности круга к его диаметру, сообщает Der Spiegel.
Как иррациональная величина оно не может быть представлено в виде завершенной дроби, поэтому после запятой следует бесконечный ряд цифр. Это свойство всегда привлекало математиков, стремившихся найти, с одной стороны, более точное значение пи, а с другой — его обобщенную формулу.
Однако математики Дэвид Бейли из лаборатории Lawrence Berkeley National Laboratory в Калифорнии и Ричард Грендел из колледжа Reed College в Портланде, рассматривали число с другой стороны — они попытались найти какой-то смысл в кажущемся хаотичном ряду цифр после запятой. В результате установили, что регулярно повторяются комбинации следующих цифр — 59345 и 78952.
Но пока что не могут ответить на вопрос, является ли повторение случайным или закономерным. Вопрос закономерности повторения определенных комбинаций цифр, и не только в числе пи,— один из самых трудных в математике. Но теперь можно сказать что-то более определенное об этом числе. Открытие прокладывает путь к разгадке числа пи и в целом к определению его сути — является ли оно нормальным для нашего мира или нет.
Оба математика интересуются числом пи с 1996 года, и с этого времени им пришлось отказаться от так называемой «теории чисел» и обратить внимание на «теорию хаоса», являющуюся ныне их главным оружием. Исследователи конструируют на основе отображения числа пи — самой распространенной его формой является при этом 3,14159... — ряды чисел между нулем и единицей — 0,314, 0,141, 0,415, 0,159 и так далее. Поэтому, если число пи действительно является хаотичным (а на компьютерах уже вычислено 500 миллиардов цифр после запятой), то хаотичным должны быть и ряды чисел, начинающихся с нуля. Но ответа на этот вопрос пока нет. Разгадать секрет пи, как и его старшего брата — числа 42, с помощью которого многие исследователи пытаются объяснить тайну мироздания, еще предстоит."
Интересные данные о распределении цифр Пи.
(Программирование — величайшее из достижений человечества. Благодаря ему мы регулярно узнаем то, что нам знать совсем не нужно, но уж очень интересно)
Некто не поленился, посчитал (для миллиона цифр после запятой):
нулей = 99959,
единиц = 99758,
двоек = 100026,
троек = 100229,
четвёрок = 100230,
пятёрок = 100359,
шестёрок = 99548,
семёрок = 99800,
восьмёрок = 99985,
девяток = 100106.
В первых 200,000,000,000 десятичных знаках Пи цифры встречались с такой частотой:
'0' : 20000030841;
'1' : 19999914711;
'2' : 20000136978;
'3' : 20000069393
'4' : 19999921691;
'5' : 19999917053;
'6' : 19999881515;
'7' : 19999967594
'8' : 20000291044;
'9' : 19999869180;
То есть цифры распределены почти равномерно. Почему?Потому что по современным математическим представлениям при бесконечном количестве цифр их будет точно поровну, кроме того единичек будет столько же, сколько двоек и троек вместе взятых и даже столько же, сколько и всех остальных девяти цифр вместе взятых . Но тут знать, где остановиться, ловить момент, так сказать, где их действительно поровну.
И еще - в цифрах числа Пи можно ожидать появление любой наперед заданной последовательности цифр. Например, самые распространенные расстановки встретились в следующих по счету цифрах:
01234567891 : с 26,852,899,245
01234567891 : с 41,952,536,161
01234567891 : с 99,972,955,571
01234567891 : с 102,081,851,717
01234567891 : с 171,257,652,369
01234567890 : с 53,217,681,704
27182818284 : с 45,111,908,393 - это цифры числа е. (
Была такая шутка: ученые нашли последнее число в записи Пи - им оказалось число е, почти попали)
Можно поискать в первых десяти тысячах знаков Пи свой телефон или дату рождения, если не получится, то ищите в 100.000 знаков.
В числе 1/Пи начиная с 55,172,085,586 знака идут 3333333333333, не правда ли удивительно?
В философии обычно противопоставляют случайное и необходимое. Так знаки числа пи случайны? Или они необходимы? Скажем, третий знак числа пи равен "4". И вне зависимости от того, кто-бы это пи вычислял, в каком месте и в какое время он бы это не делал, третий знак с необходимостью всегда будет равен "4".
На http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibpi.html лежит статья о связи чисел Фибоначчи с числом Пи.
Еше интересное:
1. В десятичных позициях числа Пи 7, 22, 113, 355 — цифра 2. Дроби 22/7 и 355/113 - хорошие приближения к числу Пи.
2. Коханский нашел, что Пи является приблизительным корнем уравнения: 9х^4-240х^2+1492=0
3. Если записать заглавные буквы английского алфавита по часовой стрелке в круг и вычеркнуть буквы имеющие симметрию слева - направо: A,H,I,M,O,T,U,V,W,X,Y, то оставшиеся буквы образуют группы по 3,1,4,1,6 букв.
(A) BCDEFG (HI) JKL (M) N (O) PQRS (TUVWXY) Z
6 3 1 4 1
Так что английский алфавит должен начинаться с буквы Н, I или J, а не с буквы А :)
http://www.pithemovie.com/clips.html
http://sci-humor.blogspot.com/2010/01/2010.html
http://www.eveandersson.com/pi/digits/1000000
3.
14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436
78925903600113305305488204665213841469519415116094
33057270365759591953092186117381932611793105118548
07446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798
60943702770539217176293176752384674818467669405132
00056812714526356082778577134275778960917363717872
14684409012249534301465495853710507922796892589235
42019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859...
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibpi.html
http://shkolazhizni.ru/archive/0/n-14621/ - смешной текст, хотя не знаю никакого математика Улема...
Поскольку в последовательности знаков числа пи нет повторений – это значит, что последовательность знаков пи подчиняется теории хаоса, точнее, число пи – это и есть хаос, записанный цифрами. Более того, при желании, можно этот хаос представить графически, и есть предположение, что этот Хаос разумен. В 1965-м году американский математик М. Улэм, сидя на одном скучном собрании, от нечего делать начал писать на клетчатой бумаге цифры, входящие в число пи. Поставив в центре 3 и двигаясь по спирали против часовой стрелки, он выписывал 1, 4, 1, 5, 9, 2, 6, 5 и прочие цифры после запятой. Попутно он обводил все простые числа кружками. Каково же было его удивление и ужас, когда кружки стали выстраиваться вдоль прямых! Позже он сгенерировал на основе этого рисунка цветовую картину с помощью специального алгоритма. Что изображено на этой картине – засекречено.
А нам-то что с того? А следует из этого то, что в десятичном хвосте числа пи можно отыскать любую задуманную последовательность цифр. Ваш телефон? Пожалуйста, и не раз (проверить можно тут, но имейте в виду, что эта страничка весит около 300 мегабайт, так что загрузки придется подождать. Можно скачать жалкий миллион знаков тут или поверить на слово: любая последовательность цифр в десятичных знаках числа пи рано или поздно найдется. Любая!
Для более возвышенных читателей можно предложить и другой пример: если зашифровать все буквы цифрами, то в десятичном разложении числа пи можно найти всю мировую литературу и науку, и рецепт изготовления соуса бешамель, и все священные книги всех религий. Я не шучу, это строгий научный факт. Ведь последовательность БЕСКОНЕЧНА и сочетания не повторяются, следовательно она содержит ВСЕ сочетания цифр, и это уже доказано. А раз все, то все. В том числе и такие, которые соответствуют выбранной вами книге.
А это опять-таки означает, что там содержится не только вся мировая литература, которая уже написана (в частности и те книги, которые сгорели и т.д.), но и все книги, которые еще БУДУТ написаны.
Получается, что это число (единственное разумное число во вселенной!) и управляет нашим миром.
Вопрос в том, как их там отыскать...
А еще в этот день родился Альберт Эйнштейн, который предсказал... да чего он только не предсказал! ... даже темную энергию.
Был этот мир глубокой тьмой окутан.
Да будет свет! И вот явился Ньютон.
Но Сатана не долго ждал реванша.
Пришел Эйнштейн - и стало все, как раньше.
Они хорошо коррелируются - пи и Альберт...
Теории возникают, развиваются и ...
Суть: число Пи не равно 3,14159265358979....
Это заблуждение, основанное на ошибочном постулате отождествления плоского Евклидового пространства с реальным пространством Вселенной.
Краткое объяснение почему в общем случае Пи не равно 3,14159265358979...
Этот феномен связан с кривизной пространства. Силовые линии во Вселенной на значительных расстояниях не идеальные прямые, а слегка изогнутые линии. Мы уже доросли до момента констатации факта, что в реальном мире не существует идеально прямых линий, идеально плоских кругов, идеального Евклидового пространства. Следовательно, мы должны представлять себе любой круг одного радиуса на сфере гораздо большего радиуса.
Мы заблуждаемся, думая что пространство плоско, «кубично». Вселенная не кубична, не цилиндрична и тем более не пирамидальна. Вселенная сферична. Единственный случай, когда плоскость может быть идеальной (в смысле «неизогнутой») является случай, когда такая плоскость проходит через центр Вселенной.
Конечно, кривизной CD-ROMа можно пренебречь, поскольку диаметр компакт-диска значительно меньше диаметра Земли, тем более диаметра Вселенной. Но пренебрегать кривизной в орбитах комет и астероидов не следует. Неистребимое Птолемеевское убеждение, что мы всё ещё находимся в центре Вселенной может нам дорого стоить.
Ниже приводятся аксиомы плоского Евклидова («кубичного» Декартова) пространства и сформулированная мной дополнительная аксиома для сферического пространства.
Аксиомы плоского сознания:
через 1 точку можно провести бесконечное количество прямых и бесконечное количество плоскостей.
через 2 точки можно провести 1 и только 1 прямую, через которую можно провести бесконечное количество плоскостей.
через 3 точки в общем случае нельзя провести ни одной прямой и одну, и только одну, плоскость. Дополнительная аксиома для сферического сознания:
через 4 точки в общем случае нельзя провести ни одной прямой, ни одной плоскости и одну и только одну сферу.
Длинная, с множеством нелирических отступлений, версия находится в процессе доработки и в сыром виде (до публикации в портале) высылается всем желающим для замечаний, комментариев, пожеланий и т.п.
Автор: Арсентьев Алексей Иванович
E-mail: balledvision@mail.ru
Телефон: +31-645852238